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Abstract

In this work we investigate the di�culty of the discrete logarithm problem in class
groups of imaginary quadratic orders. In particular, we discuss several strategies to com-
pute discrete logarithms in those class groups. Based on heuristic reasoning, we give advice
for selecting the cryptographic parameter, i.e. the discriminant, such that cryptosystems
based on class groups of imaginary quadratic orders would o�er a similar security as
commonly used cryptosystems.

1 Introduction

Cryptosystems based on class groups of imaginary quadratic orders (IQC) have been �rst
proposed by Buchmann and Williams [3, 4] in 1988 and 1990. Since then, there was no clear
advice on how to select the cryptographic parameter, i.e. the discriminant of the quadratic
order. The goal of this work is to close this gap. In particular, we demonstrate how large ∆
must be selected such that computing logarithms in Cl(∆) is as hard as factoring an integer
n of given size. We consider several strategies to compute discrete logarithms in class groups,
such as reductions to other computational problems, index-calculus algorithms, Pollard's λ
algorithm, and the Pohlig-Hellman algorithm in connection with an algorithm similar to the
(p − 1)-factoring method. In particular, in order to get the same security with IQC as with
RSA with 1024 bit moduli, the discriminant should have at least 687 bits.

The security of IQC is based on the apparent di�culty of computing discrete logarithms
in class groups of imaginary quadratic orders (Cl-DLP). The Cl-DLP can be extended to class
groups of orders of number �elds with arbitrarily high degree, and in furthermore, there is a
generalization of the discrete logarithm problem [2]. However, in this work we shall focus only
on imaginary quadratic �elds, and whenever the term �class groups� appears in the sequel, we
actually mean class groups of imaginary quadratic orders.

It is well known that solving the Cl-DLP is at least as hard as solving the integer fac-
torization problem (IFP, we shall describe the reduction later in this work), yet it is still
unknown whether the Cl-DLP is really harder than the IFP. The Cl-DLP can be solved with
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a subexponential index-calculus algorithm due to Hafner and McCurley [11]. This algorithm
was improved by Düllmann [9]. Recently, in [28] it has been rigorously proven that for solving
the Cl-DLP one can expect a running time proportional to L|∆|

[
1
2 ,

3
4

√
2 + o(1)

]
, where ∆ is

the discriminant of the imaginary quadratic order. Moreover, Jacobson [15] has applied the
ideas of the MPQS to class group computations. In fact, the machinery behind his algorithm
is the same as that of the original MPQS, and although his algorithm hasn't been analyzed,
empirical data suggest a running time proportional to L|∆|

[
1
2 , 1 + o(1)

]
.

The best known algorithm to solve the IFP is the GNFS with asymptotic expected running

time proportional to Ln
[

1
3 ,

3

√
64
9

]
; the best known algorithm to solve the GF-DLP (DLP in

multiplicative groups of Galois �elds) is a variant of the GNFS with the same asymptotic
expected running time. Thus, currently the IFP or the GF-DLP can be solved asymptotically
faster than the Cl-DLP. This means that the Cl-DLP is apparently harder than the IFP or
the GF-DLP.

Hence class groups form another potential alternative to �nite �elds for DL-based cryp-
tographic protocols. Unfortunately, popular signature protocols such as DSA can't be used
with class groups in a direct way, because DSA requires the knowledge of the group order.
Computing the order of an arbitrary class group appears to be as hard as computing discrete
logarithms in class groups, because there's no e�cient algorithm known that computes the
class number. In [21] a variant of the Schnorr signature scheme that doesn't require knowledge
of the group order has been proposed.

Computing roots without knowing the class number also appears to be intractable. This
makes the Guillou-Quisquater signature protocol [10] suitable for class groups, since in this
protocol even the signer does not need to know the class number. Moreover, in [1] a variant
of DSA was presented that is based on the intractability to compute roots in �nite abelian
groups.

This paper is organized as follows: In Section 2 we recall the background we need, and in
Section 3 we give advice for selecting the security parameters.

2 Class groups

Recall that we consider class groups of imaginary quadratic �elds only. We shall state only
some necessary facts without proofs; for details we refer to [8, 5]. Let ∆ be a negative
integer such that ∆ ≡ 0, 1 (mod 4). Then ∆ is the discriminant of a unique order O∆ =
Z+ Z(∆ +

√
∆)/2 of Q(

√
∆). O∆ is maximal if and only if ∆ is fundamental, i.e. ∆ or ∆/4

is square free if ∆ ≡ 1 (mod 4) or ∆ ≡ 0 (mod 4), respectively.

Let O∆ be any (not necessarily maximal) order. The class group of O∆ is denoted by
Cl(∆), its elements are equivalence classes of invertible ideals of O∆. The group order of
Cl(∆) is the class number h(∆). Later in this work we shall need the odd parts of class
groups. We denote the odd part of a class group Cl(∆) by Clodd(∆) and its cardinality by
hodd(∆).

Any ideal of O∆ can be expressed as Za + Z(b +
√

∆)/2 such that a, b ∈ Z, a > 0 and
4a | (b2−∆), that is, such that there exists a positive integer c such that ∆ = b2− 4ac. Thus
we represent ideals as pairs (a, b) of integers. Observe that if b = 0 or b = a, then ∆ = −4ac
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or ∆ = a(a− 4c), respectively, and if a = c, then ∆ = (b− 2a)(b+ 2a). Such ideals are called
ambiguous and have order two in Cl(∆).

An ideal is said to be reduced if gcd(a, b, c) = 1, −a < b ≤ a ≤ c, and b ≥ 0 if a =
c. Each equivalence class of O∆ contains exactly one reduced ideal, thus the elements of
Cl(∆) can be represented by the reduced ideals of O∆, and checking equality of two ideal
classes means to compare the representatives. The neutral element of Cl(∆) is represented by
(1,∆ mod 2). The group operation of Cl(∆) is ideal multiplication with reduction (e.g. see [15]
or [5, Chap. 5]). It can be shown that a group operation requires O(log2 |∆|) bit operations.
The inverse of an ideal (a, b) under this operation is (a,−b). If an ideal (a, b) is reduced, then
a <

√
|∆|/3, therefore a, |b| = O(

√
|∆|).

3 Selecting the class group

In this section we shall see that the discriminant is the cryptographic parameter. We shall
discuss how to select a discriminant such that, based on heuristic grounds, computing discrete
logarithms or the order of arbitrary elements in the corresponding class group is intractable.
In particular,

• ∆ must be chosen so that there is no e�cient reduction of the CL-DLP to simpler
problems,

• |∆| must be large enough to preclude attacks with index-calculus algorithms,

• h(∆) must be large enough to preclude attacks with λ algorithms,

• h(∆) must not be smooth in order to preclude the computation of h(∆) by an algorithm
similar to the (p − 1)-factoring algorithm with subsequent application of the Pohlig-
Hellman algorithm.

It is tempting to ask whether the discriminant can be chosen such that its class number
has properties selected à priori. However, we have no control over the class number, i.e. there's
not even a probabilistic e�cient algorithm known which outputs a fundamental discriminant
whose class number has certain interesting properties (e.g. contains a large prime factor).

We shall show in the following subsections that if ∆ is chosen appropriately, then the
above conditions hold with high probability. In particular, in Sect. 3.1 we show that selecting
∆ = −p or ∆ = −8pq where p, q are primes precludes reductions to the GF-DLP and keeps
the two-part of Cl(∆) small. In Sect. 3.2 we show how large ∆ must be to preclude index-
calculus attacks. In Sect. 3.3 we show how large the class group must be to preclude attacks
with the aid of Pollard's λ-method; based on the Brauer-Siegel theorem we deduce the size of
the discriminant. In Sect. 3.4 we describe the relevance of the Pohlig-Hellman algorithm for
class groups and discuss a possible application in conjunction with another algorithm, which
is similar to the (p− 1)-factoring method. Let a smoothness bound B be given; in Sect. 3.5,
based on heuristic assumptions we show how ∆ must be chosen so that the class number is
B-smooth only with negligible probability.

It turns out that asymptotically the index-calculus methods dominate the selection of the
discriminant with respect to order of magnitude. Moreover, since the best known algorithm
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to compute class numbers of fundamental discriminants are again index-calculus methods,
it is infeasible to compute the class number of fundamental discriminants if these are large.
Therefore, the Pohlig-Hellman algorithm plays no role for class groups of maximal orders,
unless the class number is smooth, because then an algorithm similar to the (p− 1)-factoring
algorithm can be applied to compute the class number.

3.1 Class group computation by reduction to other problems

Let ∆ be a negative fundamental discriminant and let f be a positive integer. Then, if
∆ 6= −3,−4

h(∆f2) = h(∆)f
∏
p|f

(
1−

(
∆
p

)
1
p

)
,

where (∆/p) denotes the Kronecker symbol. For instance h(−8) = 1 and h(−8p2) = p −
(−8/p). Since in general it is intractable to compute class numbers of large fundamental
discriminants (see below), this could be a nice way to avoid it altogether.

However, the Cl-DLP in Cl(−8p2) can be reduced in polynomial time to the GF-DLP in Fp
[13]. Currently no e�cient reductions of this type for maximal orders are known, therefore we
shall use only class groups of maximal orders, and in the sequel ∆ will always be fundamental
and thus O∆ will be maximal.

3.1.1 Selection of a fundamental discriminant

In order to check whether an arbitrary discriminant ∆ is fundamental, it must be checked
whether ∆ (if ∆ ≡ 1 (mod 4)) or ∆/4 (if ∆ ≡ 0 (mod 4)) is square free. This can be achieved
by factoring the discriminant, but this is infeasible if the discriminant under consideration is
large. A better method is to construct D from distinct prime factors, and set ∆ = −D if
D ≡ 3 (mod 4) and ∆ = −4D otherwise.

Some of the simplest cases are

1. ∆ = −p where p ≡ 3 (mod 4) is prime; and

2. ∆ = −8pq where p and q are primes such that p ≡ 1 (mod 8), p+ q ≡ 8 (mod 16), and
(p/q) = −1, where (p/q) denotes the Legendre symbol.

Discriminants selected like this have the additional advantage that the two-part of the class
number is known to be small: In case 1, h(∆) is odd; in case 2, the even part of h(∆) is
exactly 8 (see [16, Proposition B′9]).

Observe that ∆ = −8pq is attractive by a complexity theoretic argument, because if
∆ is composite, then Cl(∆) has non-trivial ambiguous elements, whose components lead
immediately to a factorization of ∆; these ambiguous elements can be obtained by computing
discrete logarithms in Cl(∆), therefore IFP ≤ Cl-DLP.
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3.2 Class group computations by index-calculus techniques

Let Lx[e, c] be de�ned as usual, that is

Lx[e, c] def= exp
(
c(log x)e(log log x)1−e)

for real positive x, real positive c, and 0 ≤ e ≤ 1. In practice, instead of the term Lx[e, c] we
often see Lx[e, c+ o(1)], but in the sequel we shall ignore the o(1) term.

We want to compare the expected computational work for solving the IFP and the Cl-
DLP. In the following, we assume the expected running time for factoring an integer n by

the GNFS to be proportional to Ln

[
1
3 ,

3

√
64
9

]
. For the Cl-DLP, an expected running time

proportional to L|∆|
[

1
2 ,

3
4

√
2
]
has been shown in [28]. However, Jacobson [15] showed that

one can use a variant of the MPQS for DL-computations in Cl(∆). The MPQS factoring
algorithm has a conjectured expected running time proportional to Ln

[
1
2 , 1
]
, while the MPQS

DL-computation algorithm hasn't been analyzed, yet (not even heuristically). Empirical data
suggests an expected running time of L|∆|

[
1
2 , 1
]
, so we shall base our arguments on this

running time. In terms of security and e�ciency, this will yield slightly larger keys: If we
underestimate the running time of the Cl-MPQS, we overestimate the size of the security
relevant parameters. This �conservative� approach is quite common practice.

The usual approach to estimate running times of an algorithm for large input parameters
is to start from the empirical running time for smaller input parameters. If x1 and x2 are
inputs for an algorithm with expected running time Lx[e, c] and t1 is the running time of the
algorithm when executed with x1, then (see [20] or [17]) the running time t2 of the algorithm
with input x2 can be estimated by the equation

Lx1 [e, c]
Lx2 [e, c]

=
t1
t2

. (1)

However, this holds only if the sizes of x1 and x2 do not di�er too much, otherwise it can't
be ignored that o(1) → 0. Thus, if x2 is much larger than x1, then t2 will be a signi�cant
overestimate. To obtain more precise estimates a �ner expression for the running time must
be used or the o(1) term must be taken into account by modifying (1) as in [12]. We stick to
(1), since the estimates presented here di�er only slightly from those given in [12].

magnitude of expected no. of MIPS-years

n to factor n

2512 8.00× 103

2768 4.91× 107

21024 5.99× 1010

21280 2.68× 1013

21536 5.97× 1015

21792 7.91× 1017

22048 6.98× 1019

22560 2.16× 1023

23072 2.64× 1026

23584 1.63× 1029

24096 5.87× 1031

Table 1: Estimated expected computational work of the GNFS for larger inputs
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Table 1 shows some extrapolated running times for the GNFS. They are based on data
points of the factorization of RSA-155 (155 decimal digits, 512 bits) with the GNFS [26]. In
particular, it was estimated that about 8000 MIPS-years were spent.

To estimate the expected running time of the MPQS for DL-computations in class groups
for large groups, we made extensive experiments where we computed discrete logarithms
in 20 class groups of di�erent negative discriminants for each magnitude tabulated below.
The computations were carried out on a Sparc with ULTRA-170 processor. The results are
summarized in Table 2.

magnitude of mean running time (sec) standard

|∆| t∆ deviation
L|∆|

[
1
2 , 1
]
/ t∆ (sec−1)

2140 8.59× 101 3.58× 101 1.65× 107

2142 1.29× 102 8.66× 101 1.31× 107

2144 1.36× 102 5.32× 101 1.50× 107

2146 1.32× 102 3.87× 101 1.85× 107

2148 1.98× 102 6.98× 101 1.47× 107

2150 2.20× 102 1.38× 102 1.59× 107

2152 2.63× 102 1.44× 102 1.59× 107

2154 3.26× 102 1.82× 102 1.53× 107

2156 3.52× 102 1.64× 102 1.69× 107

2158 4.90× 102 3.28× 102 1.44× 107

2160 4.41× 102 1.98× 102 1.90× 107

2162 7.67× 102 4.21× 102 1.30× 107

2164 6.84× 102 2.20× 102 1.73× 107

2166 8.79× 102 3.22× 102 1.60× 107

2168 1.07× 103 4.12× 102 1.56× 107

2170 1.49× 103 8.25× 102 1.33× 107

2172 1.74× 103 8.99× 102 1.34× 107

2174 1.54× 103 9.83× 102 1.79× 107

2176 1.61× 103 8.45× 102 2.03× 107

2178 2.77× 103 1.37× 103 1.39× 107

2180 2.73× 103 1.39× 103 1.67× 107

2184 3.37× 103 1.82× 103 1.87× 107

2188 4.07× 103 1.95× 103 2.14× 107

2192 5.96× 103 2.86× 103 2.02× 107

2196 9.23× 103 3.80× 103 1.79× 107

2200 1.30× 104 5.13× 103 1.74× 107

2210 2.63× 104 8.49× 103 1.87× 107

2220 6.28× 104 3.78× 104 1.68× 107

Table 2: Empirical computational work of the Cl-MPQS for relatively small inputs

Table 2 supports the conjectured running time of L|∆|
[

1
2 , 1
]
for the MPQS. Note also that

the standard deviation is almost always about half the running time. This shows that the
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running times are pretty spread, which in turn con�rms our suspicions of taking just a single
sample.

All computations were performed on a SUN-workstation with a Sparc ULTRA-170 pro-
cessor. SUN Microsystems does not publish MIPS ratings for its machines, and in fact, the
unit MIPS-year is actually not appropriate [25]. However, it is widely used, so for simplicity
we assume 100 MIPS, which is a value of reasonable order of magnitude for this machine. By
Table 2 let us assume that L|∆|

[
1
2 , 1
]
/t∆ = 1.8× 107 sec−1. Then we get the extrapolations

in Table 3.

When we align the parameters of the IFP and of the Cl-DLP in such a way that the
expected running time for solving the Cl-DLP roughly equals the expected running time for
solving the IFP for n of some particular magnitudes, we get Table 4.

magnitude of expected no. of MIPS-years

|∆| for solving the Cl-DLP in Cl(∆)
2256 2.58
2348 9.75× 103

2512 1.18× 107

2640 6.74× 109

2768 2.24× 1012

2896 4.94× 1014

21024 7.79× 1016

21280 8.90× 1020

21536 4.56× 1024

21792 1.26× 1028

22048 2.13× 1031

22560 1.92× 1037

23072 5.30× 1042

23584 5.88× 1047

24096 3.15× 1052

Table 3: Estimated expected computational work of the Cl-MPQS for larger inputs

magnitude of

n |∆| expected no. of MIPS-years

2768 2540 4.99× 107

21024 2687 6.01× 1010

21536 2958 5.95× 1015

22048 21208 7.05× 1019

23072 21665 2.65× 1026

24096 22084 5.87× 1031

Table 4: Estimated expected computational work of the GNFS and the Cl-MPQS aligned
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3.3 Class group computations by Pollard's λ method

We now consider Pollard's λ method for computing discrete logarithms, orders of group el-
ements and hence roots of group elements. From [27] it is known that the unparallelized
version of this algorithm takes

√
π|G|/2 group operations (ignoring lower order terms) for

cyclic groups G. Moreover, r-fold parallelization speeds the λ-method up by factor r.

By the heuristics of Cohen and Lenstra [7, 6], the probability that Clodd(∆) is cyclic is
equal to 0.9775 . . . . Moreover, it can be deduced from the heuristics that if Clodd(∆) is not
cyclic, then with high probability Clodd(∆) has a cyclic subgroup Gcyc such that |Gcyc| has
the same order of magnitude as hodd(∆), and therefore, by our selection of ∆, the even part
is 1 or 8 and thus |Gcyc| and h(∆) have the same order of magnitude.

In order to provide a lower bound for ∆ we need an (asymptotic) lower bound for h(∆)
that depends on ∆ only. The best proven explicit lower bound is h(∆) > 1/55 ln |∆|

∏
p|∆(1−

2
√
p/(p + 1)) [5, Sect. 5.10.1], which is too weak for our purposes. By the Brauer-Siegel

Theorem we know that lnh(∆) ∼ ln
√
|∆| as ∆→ −∞, that is,

√
|∆|1−ε ≤ h(∆) ≤

√
|∆|1+ε

for any positive real ε and su�ciently large ∆, but no explicit constants are known to make
this statement e�ective. However, it is possible to show that h(∆) is on average c

√
|∆| with

c = 0.461559 . . . [5, Sect. 5.10.1]. This result has been proven for averages taken over class
numbers of fundamental discriminants. In this work we make the assumption that this result
is not a�ected by the restriction to the special discriminants given in section 3.1.1.

Example The time to perform a single group operation in Cl(∆) depends on ∆, yet let us
assume a �xed time of 1ms on a machine with a computing power of 100 MIPS. Then the
computational work of a single MIPS-year is equivalent to 229 group operations. Based on
this assumption and on the assumed average for the class number of a prime discriminant, in
Table 5 we present some samples for (prime) discriminants, their average class number, and
the expected computing amount to compute discrete logarithms by the λ-method; compare
this with Table 1.

magnitude of expected no. of Group operations

h(∆) |∆|
√
πh(∆)/2

expected no. of MIPS-years

2108 2218 254 4.56× 107

2129 2260 264 6.60× 1010

2162 2326 281 6.12× 1015

2189 2380 294 7.09× 1019

2233 2468 2116 2.97× 1026

2268 2538 2134 5.51× 1031

Table 5: Estimated expected computational work of the λ-method

3.4 Class group computations and the Pohlig-Hellman algorithm

The Pohlig-Hellman algorithm utilizes the prime factorization of the group order in order
to simplify DL computations. However, the best known algorithm for computing the class
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number is a variant of MPQS for DL computations in class groups and has the same expected
asymptotic running time. Thus, if |∆| is large, it is infeasible to compute h(∆) or even odd
multiples or factors (in particular the smooth part) of h(∆). Moreover, there is no e�cient
method known that checks whether a particular odd prime divides h(∆). Consequently,
the Pohlig-Hellman algorithm is not applicable to class groups in general. There are also
cryptographic protocols (e.g. the Guillou-Quisquater signature protocol) that depend explicitly
on the fact that the group order is unknown.

We now consider the special case when h(∆) is smooth. If the class number is smooth,
there is a practical method to compute the order of an arbitrary element by a method similar
to the (p − 1)-factoring method. That is, given γ ∈ Cl(∆), set α0 = γ and successively

compute αi = α
p
e(pi,B)
i
i−1 for all pi ≤ B, where pi is the ith prime, B is a smoothness bound,

and e(pi, B) depends only on pi and B. For instance, if e(pi, B) = logpi B for each pi, then
the algorithm will cover each possible prime power below the smoothness bound.

If h(∆) is B-smooth, then this computation may yield 1Cl(∆). If this happens, then there
is an i such that αi = 1Cl(∆) but αi−1 6= 1Cl(∆), and we immediately know that pi is the

largest prime factor of ordCl(∆) γ. If we set γ′ = γp
e(pi)
i where e(pi) is the smallest positive

integer such that α
p
e(pi)
i
i−1 = 1Cl(∆) and repeat the complete procedure with γ′, then we obtain

the second largest prime factor, and eventually we get the complete prime factorization of
ordCl(∆) γ. Then we are able to compute roots as well as discrete logarithms in 〈γ〉 with the
aid of the Pohlig-Hellman algorithm.

Assume that the (p−1)-like method above succeeds for an element γ and a bound B, and let
q denote the largest prime factor of ordCl(∆) γ. It is obvious that if we use a fast exponentiation
method, then we have to perform at least

∑
p<q e(p,B) log2 p group operations to �nd q. In

order to �nd a smoothness-bound, we must consider the easiest case, i.e. e(pi, B) = 1 for
all pi. Now

∑
p<q log2 p = θ(q)/ ln 2, where θ is the Chebyshev θ-function. In [23, 24] it

was shown that 0.998697x < θ(x) < 1.001093x for all x ≥ 1155901 (under assumption
of the Riemann hypothesis, it is even possible to show that |θ(x) − x| = 1/(8π)

√
x ln2 x

for x ≥ 599, cf. [23, 24]). Therefore, to �nd q we have to perform about q/ ln 2 group
operations. Note that we get the same result even in the case e(pi, q) = logpi q, because∑

p<q log2 pi logpi q = π(q) log2 q = q/ ln 2 as q →∞.

Example We continue the example from the previous section. By Table 5, 264 group oper-
ations take about 6.6× 1010 MIPS-years (similar to the computational work to factor a 1024
bit integer with the aid of the GNFS). If we assume that this amount of work is infeasible,
then it is safe to select a 63 bit smoothness-bound. At the end of the next section we shall
see that a smaller smoothness-bound is su�cient.

3.5 The smoothness probability of class numbers

The estimates in this section are based on the heuristics of Cohen and Lenstra [7, 6], although
our derivation is not rigorous at all. A more rigorous derivation should be done as in [6];
this is work in progress, and we shall present the results in a future work. In this work
we compare class numbers and ordinary integers with respect to smoothness, and we argue
that under reasonable assumptions the probability to get a smooth class number of a random
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fundamental discriminant is not much larger than the probability that a random integer is
smooth.

Consider the set of all negative fundamental discriminants ∆ such that |∆| ≤ N for some
bound N . Based on the heuristics of Cohen and Lenstra we assume that, given an odd prime
p much smaller than N and a positive integer i, the proportion of such discriminants satisfying
pi | h(∆) (or the �probability� that pi | h(∆)) is at most 1/pi + 1/pi+1 = (1 + 1/p)/pi. (The
conjectures of Cohen and Lenstra predict that for N → ∞, the probability that p | h(∆)
converges to

1−
∏
j≥1

(
1− 1

pj

)
=

1
p

+
1
p2
− 1
p5
− 1
p7

+
1
p12

+
1
p15
− · · ·

(see [6]). Our assumption for i ≥ 2 is accordance with computational experiments.)

We cannot use similar heuristics for primes that are not small compared to N . However, we
know by the Brauer-Siegel theorem that lnh(∆) ∼ ln

√
|∆| for ∆→ −∞, thus class numbers

are usually not small themselves.

Which power of 2 divides h(∆) depends on the factorization of ∆. As discussed in sec-
tion 3.1.1, we will restrict to special discriminants in order to control the two-part of h(∆).
In extension to the heuristics of Cohen and Lenstra, we assume that such restrictions do not
a�ect the probabilities discussed above.

For x uniformly chosen from a su�ciently large interval of integers, the probability that
pi | x is only about 1/pi. Comparing this with the above estimates for class numbers, we
obtain

Pr
(
pi | h(∆)

)
Pr (pi | x)

≤ 1 +
1
p

for small odd primes, which suggests that it must be expected to occur more frequently for
negative fundamental discriminants to have smooth class numbers than for uniformly chosen
integers to be smooth. We will now argue, however, that this increase in smoothness does not
imply that a signi�cant proportion of class numbers will be smooth.

Let k be any odd smooth integer. We write k as
∏
p|k p

ep(k). If k is not so large that
k | h(∆) is actually impossible, then k will have only a few di�erent prime factors. Thus, it is
conceivable that the probabilities discussed above will be reasonably close to being statistically
independent over the di�erent p dividing k. Under this presumption, we obtain

Pr
(
k | h(∆)

)
Pr
(
k | x

) =

∏
p|k Pr

(
pep(k) | h(∆)

)∏
p|k Pr

(
pep(k) | x

) ≤
∏
p|k

(
1 +

1
p

)
=: Fk .

We now want to estimate the maximum value that this product can take for k not exceeding
the order of

√
|∆| (as suggested by the Brauer-Siegel Theorem). For reaching the maximum,

k obviously must be of the form k =
∏
p<t p, i.e. the product of the smallest primes up to

some bound. We have
∏
p<t p = et as t tends to in�nity (e.g. see [22, Chap. 12]), i.e. t ≈

ln k ≈ ln
√
|∆|; and thus we estimate the maximum for Fk as∏

p<t

(
1 +

1
p

)
≈

∏
p<ln
√
|∆|

(
1 +

1
p

)
≈ ln ln

√
|∆| ,
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where the latter approximation can be seen as follows: (1 + 1/p) = (1 − 1/p2)/(1 − 1/p),
and

∏
p<t(1 − 1/p) = e−γ/ ln t + O(1/ ln2 t) (Mertens' theorem, cf. [22, Chap. 12]), while∏

p(1 − 1/p2) = 1/ζ(2) = 6/π2, thus
∏
p<t(1 + 1/p) = 6eγ/π2 ln t ≈ 1.08 ln t as t tends to

in�nity.

Now if we choose |∆| so large that random integers of the expected order of h(∆) are
smooth only with probability close to 0, then the modest maximum size of Fk indicates that
the tendency of the class number towards having small factors does not mean it will be smooth
with non-negligible probability.

Speci�cally, let B = M1/u; then the probability that a random positive integer less than
M is B-smooth is approximately ρ(u), where ρ is Dickmann's ρ-function [14]. We arrive at
an estimated probability of at most ρ(u) ln lnM for the class number being B-smooth by

requiring M ≈ hodd(∆)
h(∆) c

√
|∆| where h(∆)

hodd(∆) is either 1 or 8 depending on how ∆ is chosen

(section 3.1.1) and where c = 0.461559 . . . [5, Sect. 5.10.1]. I.e.,

|∆| ≈ 22B2u

if h(∆) is odd and

|∆| ≈ 28B2u

if the even part of h(∆) is 8. Note that if |∆| < 24600, then ln ln
√
|∆| < 23 so that 8ρ(u) is

an upper bound for the probability estimate.

Assume that an attacker applies the algorithm from the preceding section to class groups
of random discriminants of a certain length (chosen as described in Sect. 3.1.1). Further
assume that he will spend at most Wmax computational work for a single class group until
he gives up, and that B is the smoothness-bound for which he can succeed with this amount
of work. Then he can expect one case of success for an investment of computational work
W = Wmax/Pr

(
h(∆) is B-smooth

)
. We will determine lower bounds for the size of ∆ based

on this attack scenario.

Recall that 1 MIPS-year is approximately equivalent to 229 group operations. Let W = 264

group operations which, by Tables 1 and 5, is comparable to the expected computational work
to factor a composite 1024 bit integer by the GNFS; then W is currently infeasible (see also
[17] for extrapolations into the future). Let Wmax = 242 group operations (corresponding to
a smoothness bound of approximately 242/ ln 2, cf. section 3.4), which is comparable to the
expected work to factor a 512 bit integer by the GNFS. Then a smoothness-probability of up
to 2−22 is acceptable, thus we need u such that ρ(u) ≈ 8 · 2−22, and this is satis�ed by u = 8.
Since B ≈ 241.5, the discriminant should have at least 666 bits for case 1 of section 3.1.1, and
at least 672 bits for case 2 of section 3.1.1.

If Wmax is larger or if a smaller smoothness-probability is demanded, then the order
of magnitude of the discriminant will increase accordingly. For instance, if we choose
Pr
(
h(∆) is B-smooth

)
= 2−30 with Wmax (and hence B) as before, then u = 9.6, and thus

the discriminant should have at least 799 (case 1) or 805 (case 2) bits.

4 Conclusion

Based on the investigation of several strategies to solve the CL-DLP and based on heuristic
reasoning, we have shown how to select the discriminant such that the security of cryptosys-
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tems based on class groups o�er a comparable security as commonly used cryptosystems (such
as RSA). In particular, we have shown that the size of the discriminant asymptotically de-
pends only on index-calculus algorithms (see Table 4). Thus, since index-calculus algorithms
for solving the Cl-DLP are asymptotically much slower than index-calculus algorithms to solve
the IFP (such as the GNFS), the discriminant can be selected smaller than a RSA modulus.

In a future work we shall demonstrate the impact of this result on the e�ciency and
performance of IQC. As a further research project we would also like to replace the heuristic
reasoning of Sect. 3.5 by a more rigorous reasoning.
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